Efficient Noisy Optimisation with the Sliding Window Compact Genetic Algorithm
نویسندگان
چکیده
The compact genetic algorithm is an Estimation of Distribution Algorithm for binary optimisation problems. Unlike the standard Genetic Algorithm, no cross-over or mutation is involved. Instead, the compact Genetic Algorithm uses a virtual population represented as a probability distribution over the set of binary strings. At each optimisation iteration, exactly two individuals are generated by sampling from the distribution, and compared exactly once to determine a winner and a loser. The probability distribution is then adjusted to increase the likelihood of generating individuals similar to the winner. This paper introduces two straightforward variations of the compact Genetic Algorithm, each of which lead to a significant improvement in performance. The main idea is to make better use of each fitness evaluation, by ensuring that each evaluated individual is used in multiple win/loss comparisons. The first variation is to sample n > 2 individuals at each iteration to make n(n− 1)/2 comparisons. The second variation only samples one individual at each iteration but keeps a sliding history window of previous individuals to compare with. We evaluate methods on two noisy test problems and show that in each case they significantly outperform the compact Genetic Algorithm, while maintaining the simplicity of the algorithm.
منابع مشابه
An Extended Compact Genetic Algorithm for Milk Run Problem with Time Windows and Inventory Uncertainty
In this paper, we introduce a model to optimization of milk run system that is one of VRP problem with time window and uncertainty in inventory. This approach led to the routes with minimum cost of transportation while satisfying all inventory in a given bounded set of uncertainty .The problem is formulated as a robust optimization problem. Since the resulted problem illustrates that grows up ...
متن کاملComparative Study of Particle Swarm Optimization and Genetic Algorithm Applied for Noisy Non-Linear Optimization Problems
Optimization of noisy non-linear problems plays a key role in engineering and design problems. These optimization problems can't be solved effectively by using conventional optimization methods. However, metaheuristic algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) seem very efficient to approach in these problems and became very popular. The efficiency of these ...
متن کاملAn Efficient Target Tracking Algorithm Based on Particle Filter and Genetic Algorithm
In this paper, we propose an efficient hybrid Particle Filter (PF) algorithm for video tracking by employing a genetic algorithm to solve the sample impoverishment problem. In the presented method, the object to be tracked is selected by a rectangular window inside which a few numbers of particles are scattered. The particles’ weights are calculated based on the similarity between feature vecto...
متن کاملOptimisation of assembly scheduling in VCIM systems using genetic algorithm
Assembly plays an important role in any production system as it constitutes a significant portion of the lead time and cost of a product. Virtual computer-integrated manufacturing (VCIM) system is a modern production system being conceptually developed to extend the application of traditional computer-integrated manufacturing (CIM) system to global level. Assembly scheduling in VCIM systems is ...
متن کاملMining Recent Frequent Itemsets in Sliding Windows over Data Streams
This paper considers the problem of mining recent frequent itemsets over data streams. As the data grows without limit at a rapid rate, it is hard to track the new changes of frequent itemsets over data streams. We propose an efficient one-pass algorithm in sliding windows over data streams with an error bound guarantee. This algorithm does not need to refer to obsolete transactions when 316 C....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1708.02068 شماره
صفحات -
تاریخ انتشار 2017